
Introduction to Symbolic
Verification Methods

David Basin

Institute of Information Security
ETH Zurich

Road map

+ Motivation

• Basic notions

• Problems

• Symbolic models

1

Security protocols

• Omnipresent

� Authentication: smart-card ↔ ATM, single sign-on, ...

� Secure communication: SSL/TLS, SSH, IPsec, ...

� Special purpose: e-auctions, e-voting, ...

• Use cryptographic primitives to achieve security objectives

• Nontrivial to get right

“Security protocols are three-line programs that people
still manage to get wrong.”

Roger Needham

2

An example: naive use of primitives

• Consider following use of Sign and Encrypt

Alice→ Bob: {{“I love you”}K−1
Alice
}KBob

Alice signs and encrypts for Bob’s eyes.

• Bob decrypts, re-encrypts, and forwards

message to Charlie, who buys Alice flowers.

Bob→ Charlie: {{“I love you”}K−1
Alice
}KCharlie

• Protocol weakness has nothing to do with crypto building blocks

� A protocol does more than just encrypt or sign.

� It binds messages to principals, purposes, time, etc.

3

Goals for two classes

• To understand the kinds of problems that arise.

• To be precise about concepts and guarantees, where possible.

• To explain ideas behind different symbolic methods

� Methods/tools: Paulson’s inductive method, Scyther

• (Part II) To examine realistic protocols and problems that arise

when humans are involved.

� Method/Tool: Tamarin

4

Road map

• Motivation

+ Basic notions

• Problems

• Symbolic models

5

Security protocols

• A protocol consists of rules describing how messages are

exchanged between principals.

1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

• A security (or cryptographic) protocol uses cryptographic

mechanisms to achieve security objectives.

• In practice, descriptions combine prose, data types, diagrams, ad

hoc notations, and message sequences as above.

6

Message constructors (sample)

Names: A, B or Alice, Bob,

Asymmetric keys: A’s public key KA and private key K−1A .

Symmetric keys: KAB shared by A and B.

Encryption: asymmetric {M}KA
and symmetric {M}KAB

.

Signing: {M}K−1
A

.

Nonces: NA. Fresh data items used for challenge/response.

Timestamps: T . Denote time, e.g., used for key expiration.

Message concatenation: M1,M2. (Or M1||M2)

Example: {A, TA,KAB}KB
.

7

Communication

• Fundamental notion: communication between principals.

A→ B : {A, TA,KAB}KB

• A and B name roles.

Can be instantiated by any principal playing the role.

• Communication is asynchronous.

(Sometimes modeled as being synchronous.)

• Protocol specifies actions of principals in different protocol roles.

It thereby also defines a set of event sequences (traces).

8

An authentication protocol (NSPK)

1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

Here is an instance (a protocol run):

{Alice,17}
BobK

{17,41}

{41}

AliceK

BobK

N.B. principals can be engaged in multiple runs (role automata). 9

Standard symbolic attacker model
(Dolev-Yao)

• An active attacker who controls the network.

� He can intercept and read all messages.

� He can decompose messages into their parts.

But cryptography is “perfect”: decryption requires inverse keys.

� He can construct and send new messages, any time.

� He can even compromise some agents and learn their keys.

• A protocol should ensure that communication between

non-compromised agents achieves objectives (next slide).

• Strong attacker =⇒ protocols work in many environments.

Note: symbolic model idealizes cryptographic model based on

bit-strings and probabilistic polynomial-time attackers.
10

Typical protocol objectives

Terminology not completely standard, but following are typical.

Entity authentication: One party verifies the identity of a second

party and that this party has recently, actively participated in the

protocol. (“I am here now.”)

Secrecy (Confidentiality): Data available only to those authorized

to obtain it. For keys, this is sometimes called key authentication.

Freshness: Data is new, i.e., not replayed from an older session.

Key confirmation: One party is assured that a second party

actually possess a given key.

11

Protocol objectives: entity authentication

• Agreement is a variant of authentication focusing on views.

A protocol guarantees that an initiator A has non-injective
agreement with a responder B on a set of data items ds if,

whenever A (acting as initiator) completes a run of the protocol,

apparently with responder B, then B has been running the

protocol, apparently with A, and B was acting as responder in

his run, and the two agents agreed on the data values

corresponding to all the variables in ds.

• Injective agreement when additionally

each run of A corresponds to a unique
run of B. Analogous notion of matching
histories sometimes used.

BA

Mechanisms used: nonces or timestamps with replay caches
12

Example: NSPK

B
N N

A

1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

Objective: Upon completion, A injectively agrees with B on both

nonces, which are shared secrets between them. And vice versa.

13

Road map

• Motivation

• Basic notions

+ Problems

• Symbolic models

14

Recall NSPK 1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

• Goal: mutual authentication (agreement).

• Recall principals can be involved in multiple runs.

Goal should hold in all interleaved protocol runs.

• Correctness argument (informal).

1. This is Alice and I have chosen a nonce NAlice.

2. Here is your Nonce NAlice. Since I could read it, I must be Bob.

I also have a challenge NBob for you.

3. You sent me NBob. Since only Alice can read this and send it

back, you must be Alice.

Protocol proposed in 1970s and used for decades.
15

Even Bush can beat a grandmaster

16

Attack on NSPK
1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

NSPK #1 NSPK #2

a,N{ }a Kc
a,N{ }a Kb

aa Kb
{ }N ,N Ka{ }

abN ,N

Nb K
{ }

c
Nb K

{ }
b

b(ob) believes he is speaking with a(lice)!

How might you protect against this attack?
17

Why are such attacks
so difficult to spot?

(It took 20 years to find attack.)

• Assumptions are unclear.

Is the intruder an insider or an outsider?

• Complex underlying model despite the suggestion of simplicity.

• Humans poor at envisioning all possible interleaved computations.

• And real protocols are much more complex!

� E.g., IPsec contains many messages, multiple subprotocols, etc.

� Complexity reflects problems in design & standardization process.

18

Road map

• Motivation

• Basic notions

• Problems

+ Symbolic models

19

Recall NSPK
1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

NSPK #1 NSPK #2

a,N{ }a Kc
a,N{ }a Kb

aa Kb
{ }N ,N Ka{ }

abN ,N

Nb K
{ }

c
Nb K

{ }
b

b(ob) believes he is speaking with a(lice)!

20

What went wrong?

• Problem in step 2.

B → A : {NA, NB}KA

Agent B should also give his name: {NA, NB,B}KA
.

• Is the improved version now correct?

21

Formal analysis of protocols

• Approach protocol correctness as system correctness.

• Build a formal symbolic model M of protocol.

� Formal = well-defined mathematical semantics.

� Symbolic = abstract away bit-strings to (algebraic) terms.

� Model as a transition system describing all actions of principals

and the attacker.

• Specify property φ

Typically a safety property, e.g., secrecy is an invariant.

• Correctness M |= φ

� Theorem proving and model checking are main techniques.

� I will consider each of these in what follows.

22

Interleaving trace models

• Modeling idea: model possible communication events.

A→ B : M1

C → D : P1

B → A : M2

D → C : P2
...

• A trace is a sequence of events.

• Trace-based interleaving semantics: protocol denotes a trace set.

Interleavings of (partial) protocol runs and attacker messages.

• Attacker model (Dolev-Yao): the attacker controls the network.

He can read, intercept, and create messages.

23

Modeling: protocol as an
inductively-defined trace set

A→ B : {A,NA}KB

B → A : {NA, NB}KA

A→ B : {NB}KB

Set P formalizes protocol steps.

0. 〈〉 ∈ P

1. t, A→ B : {A,NA}KB
∈ P if t ∈ P and fresht(NA)

2. t, B → A : {NA,NB}KA
∈ P if t ∈ P , fresht(NB), and A′ → B : {A,NA}KB

∈ t

3. t, A→ B : {NB}KB
∈ P if t ∈ P , A→ B : {A,NA}KB

∈ t
and B′ → A : {NA,NB}KA

∈ t

4. t, Spy → B : X ∈ P if t ∈ P and X ∈ has(sees(t))

Rules 0–3 formalize the protocol steps and rule 4 the attacker model.
sees(t) is set of messages in trace t and has1 is given on next page.

1Paulson’s formalization uses two inductively defined predicates synth and analyz. Account simplified here.

24

has formalizes analysis powers of DY Intruder

has(T) denotes smallest set of messages inferable from set T

• t ∈ T ⇒ t ∈ has(T)

• t1 ∈ has(T) ∧ t2 ∈ has(T)⇒ (t1, t2) ∈ has(T)

• (t1, t2) ∈ has(T)⇒ ti ∈ has(T), for i ∈ {1, 2}

• t1 ∈ has(T) ∧ t2 ∈ has(T)⇒ {t1}t2 ∈ has(T)

• t1 ∈ has(T)⇒ hash(t1) ∈ has(T)

• {t1}t2 ∈ has(T) ∧ t2−1 ∈ has(T)⇒ t1 ∈ has(T)

Reflects perfect cryptography assumption:

• Decryption requires right key.

• Hashing collision free and one cannot compute preimage.

25

Modeling (cont.)

• A property also corresponds to set of traces.

Authentication for A: If (1) A used NA to start a protocol run
with B and (2) received NA back, then B sent NA back.

AauthenticatesB(t) ≡ if A→ B : {A,NA}KB
∈ t and

B′ → A : {NA,NB}KA
∈ t

then B → A : {NA,NB}KA
∈ t

SpyattacksA(t) ≡ ¬AauthenticatesB(t)

• Hence the correctness of protocols has an exact meaning.

Every [no] trace of the protocol P has property X.

P XP

X

• Every proposition is either true or false.

How do we determine which holds?
26

Interactive verification
Inductive approach

• Verification approach due to Larry Paulson, Cambridge

� Proofs with Isabelle/HOL system (HOL = higher-order logic)

� Properties established by induction over trace sets

• Many protocols analyzed: TLS, SET, Kerberos IV, ...

� Proofs scripts constructed by hand (with machine support).

� Typical protocol requires a few days to construct a proof script

� Scripts machine-checked, usually in a few minutes

� Flaws come out in terms of unprovable goals

L C Paulson, The inductive approach to verifying
cryptographic protocols. J. Computer Security, 1998

27

Analysis using model-checking

• Inductive definition gives rise to an infinite tree.

...

... ...

Says A->B ...

...

Says A->Spy ...
Says Spy->A ...

Says A->Spy ...
Says B->A ...

...

Says Spy->B ...Says Spy->A ...Says A->Spy ...

• A property correspond to a set of nodes, e.g., SpyattacksA(t).

• State enumeration can be used to find attack in the infinite

tree, i.e., a node in above set.

Pure state enumeration is hopelessly inefficient.

• Effective model-checking tools exist, e.g., OFMC & Scyther

Based on automatic, algorithmic methods, rather than

interactively constructed proofs in a formal logic.
28

Scyther Tool

• Model-checker developed by Cas Cremers.

• Supports automated protocol verification and falsification.

• Performs backward search (from security violation), where an

attack is found if initial state is reachable.

• Security properties represented by claim events in the protocol.

• Supports symmetric/asymmetric keys, hash functions, key-tables,

multiple protocols in parallel, composed keys, etc.

• Supports different attacker models.

• Extension can generate Isabelle/HOL proofs.

• State-of-art and freely available for download.

29

Specifying protocols
A→ B : {A,NA}KB

B → A : {NA, NB}KA

A→ B : {NB}KB

30

Executing protocols

Each role can be instantiated multiple times.

Each time creates a new thread, with a new identifier, e.g., #1.
Thread variables instantiated during execution.

31

Executing protocols in the presence of the intruder

�
2

3

��
�

�����

�
2

3

��
�

�����
��

�

�

�

�

�

�
2

3

��

��

��

�

�
2

3

32

Demo of Scyther

33

Complexity results

• There is no silver bullet!

• Undecidable problem in general

=⇒ No procedure can decide attack/correct for all protocols

• NP-complete even when strong constraints are involved.

� Allow only a bounded number of threads to be created.

=⇒ State space explosion

34

Conclusion

• Protocols are tricky to design.

More needed in practice than secure channels.

• Formal methods provide basis for establishing correctness P |= φ.

• State-of-the-art tools can handle small protocols fairly well.

Larger protocols, composed of subprotocols, using more complex

primitives, are beyond state-of-the-art.

• Correct design 6= correct implementation.

� Implementation issues must be handled separately.

� One should not forget model assumptions either.

35

Reading

• Basin, Mödersheim, Viganò, OFMC: A symbolic model checker for

security protocols, IJIS, 2004.

• Basin et. al., Improving the Security of Cryptographic Protocols

Standards, IEEE Security & Privacy, 2015.

• Basin, Cas Cremers, Simon Meier, Provably repairing the ISO/IEC

9798 standard for entity authentication, Journal of Computer

Security, 2013.

• Basin, Cas Cremers and Catherine Meadows, Model Checking

Security Protocols, Handbook of Model Checking, 2015.

• Larry Paulson, The Inductive Approach to Verifying Cryptographic

Protocols. J. Computer Security 6:85-128, 1998.

36

